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Abstract. Three-axes elastic neutron scattering measurements demonstrate that the five-fold modulated
phase (phase 1/5) of BCCD exhibits under electric field a phase transition without change of superlattice
periodicity. Through the monitoring of high-order satellite diffraction peaks as a function of electric field
and temperature, the competition between this phase and neighboring polar phases with other periods
has been characterized. At a threshold electric field of about 20 kV/cm, a rather abrupt redistribution of
the satellite intensities of phase 1/5 is observed, without change of the corresponding primary modulation
wave vector ( 1

5
c∗). A quantitative analysis of these intensity variations confirms the earlier conjecture based

on dielectric experiments that the modulation essentially changes from a non-polar sequence 5up5down
(〈5〉) of polarized z-perpendicular layers of basic semicells, to a polar sequence 6up4down (〈64〉). The
transition is caused by the flip of the average polarization of one of the interface layers, and can then be
described as a bounded discrete motion of the wall separating positive and negative microdomains within
the five-fold unit cell. This type of polarization-flip phase transition had been detected and characterized
in one-dimensional theoretical models as generalized Frenkel-Kontorova models or spin chains with elastic
couplings, but had not been anticipated in theoretical analyses of BCCD, for which other phenomenological
or microscopic models (as the ANNNI model) have been considered adequate. Only recently and in view
of the experimental results reported here, we demonstrated, using a general phenomenological displacive
model, the possibility of this type of transition in systems as BCCD [Phys. Rev. B 62, 11418 (2000)].
Phase diagrams with spin-flip phase transitions yield very peculiar phase diagrams with a checkerboard
topological structure and self-similar features. In particular, they may present special critical points as the
so-called upsilon points [J. Statistical Phys. 62, 45 (1991)]. BCCD may be then the first experimental
system where they could be observed.

PACS. 64.70.-p Specific phase transitions

1 Introduction

Solids with an incommensurate structural thermal insta-
bility can exhibit complex phase sequences as a func-
tion of temperature with several intermediate commen-
surate phases where the structural modulation locks into
different multiple periodicities of the underlying basic
lattice. BCCD (Betaine Calcium Chloride Dihydrate,
(CH3)3NCH2COO.CaCl2.2H2O) is the most conspicuous
experimental case with more than fifteen intermediate
commensurate phases of different periods detected be-
tween room temperature and 0 K, so it has been con-
sidered as the physical realization of the so-called incom-
plete devil’staircase [1,2]. At room temperature BCCD
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stabilizes in an orthorhombic Pnma paraelectric crys-
talline phase. Below Ti = 164 K the structural mod-
ulation develops with a wavevector q = δ(T )c∗ with
q = δ(T )(2π

c0
), (0 ≤ δ ≤ 0.319). The lattice constant in

the z direction is c0 = 10.824 Å. For T ≤ 115 K a harm-
less devil’s staircase is observed as a series of commensu-
rate phases δ = 1

4 ,
1
5 ,

1
6 .... which stabilize successively with

decreasing T . At T0 = 46 K the compound reaches a non-
modulated ferroelectric low temperature phase of Pn21a
symmetry, i.e. with the spontaneous polarization along
the b-axis. According to the symmetry of the structural
modulation or to the order parameter, the polarity of the
different intermediate modulated phases only depends on
the parity of the fraction δ. Phases with δ = odd

odd are non
polar phases, while those with δ = odd

even are polar along
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the a-axis. Only phases with δ = even
odd are polar along the

b-axis, as the final ferroelectric δ = 0 phase [3].

The type of phase diagrams with several competing
commensurate and incommensurate periodicities observed
in BCCD can be somehow simulated with spin lattice
models generalized to include competing interactions, as
the ANNNI (axial next nearest neighbor Ising) model and
its derivatives [4]. In fact, such phase diagrams are quite
common among magnetic materials [5]. Within this sim-
plified model, a pseudospin is associated to each semicell
along the c-axis representing a local two-valued dielectric
polarization along the b-axis; the structural modulation
is then reduced to the configuration of a 3D pseudospin
system. Under this scheme, the ANNNI model has been
quite successful in reproducing many features observed in
BCCD, in particular its phase diagram as a function of
hydrostatic pressure and temperature [6,7]. Assuming a
saturated regime where the lattice planes perpendicular to
the c-axis have all a saturated polarization, the modula-
tion is effectively described by a one-dimensional chain of
“polar” spins, whose net polarization (along the b-axis) is
given directly by the spin configuration. For each phase δ,
the equilibrium spin configuration at zero electric field is
in general that with minimal net polarization compati-
ble with the period and primary wavelength forced by the
δ value. Hence, for phase 1/4 and 1/5, the spin modu-
lations would be ↑↑↑↑↓↓↓↓ and ↑↑↑↑↑↓↓↓↓↓, respectively,
or in short notation the configurations 〈4〉 and 〈5〉, which
are non-polar, while for phases 2/7 or 2/9, one expects
the polar configurations ↑↑↑↑↓↓↓ and ↑↑↑↑↑↓↓↓↓, respec-
tively, or in short 〈43〉 and 〈54〉. As emphasized above, one
should note that the pseudospins in this notation refer to
semicell along the c-axis. Thus, for example, the actual
period of a configuration like 〈54〉 is 5454 to complete a
number pair of spins and semicells, and corresponds to
a superstructure cell of parameter 9c, as it should be.
This scheme explains in a simple manner the dependence
of the b-polarity on the δ-parity. This picture, although
quite reduccionist with respect to the actual experimen-
tal modulated structures observed in phases 1/4 and 1/5,
contains an essential point which was indeed confirmed by
the experimental structural analysis [8], namely, that the
modulation is essentially saturated in phases 1/4 and 1/5,
and for many atoms is approximately described along the
b-axis by a step-like “solitonic” function.

The dependence with electric field (E) (along the b-
axis) of the harmless phase diagram of BCCD has been
previously investigated using diffraction experiments only
at low fields in [9–11]. Le Maire et al. [12] arrived to pro-
pose a rather complete (E, T ) phase diagram including
higher fields up to about 20 kV/cm, from purely macro-
scopic dielectric measurements and using an inert gas
small pressure to avoid dielectric breakdown. In general,
as expected, the b-polar phases are favored by the field.
Hence, the electric field reduces progressively the stabil-
ity range of non-polar phases as 1/4 and 1/5, stabiliz-
ing instead the neighboring polar ones 2/7, 2/9 or 2/11.
At higher fields, Le Maire et al. [12] reported an impor-
tant new feature shown in Figure 1, where a scheme of

0
60 70 8050

15

T (K)

E (kV/cm)

1/5

?

2/11 2/9

Fig. 1. Scheme of the (E,T ) phase diagram of BCCD at low
temperature proposed by Le Maire et al. [12].

their phase diagram in the temperature domain around
phase 1/5 is approximately reproduced. At a threshold
field of about 16 kV/cm, a new phase seems to stabi-
lize and overcomes the competition with the neighboring
phases 2/9 and 2/11, whose stability ranges start decreas-
ing at the expense of the new phase. From the value of
the saturated polarization of the hysteresis loops observed
within this new phase, Le Maire et al. conjectured that the
new phase should correspond to a local polarization flip.
The system would pass from a 〈5〉 configuration (5 spins
up and 5 spins down) to a configuration 〈64〉 through the
“flip” of an interface pseudospin from negative to positive
values. This transition could then be considered as a dis-
crete sliding of the walls separating microdomains of pos-
itive and negative polarization. In phase 1/5 at low fields,
these walls are regularly spaced along the c-axis separat-
ing domains of 5 semicells, the threshold field would unpin
these walls through the polarization flip of a whole plane of
semicells and would increase the positive microdomains to
6 semicells, reducing the negative ones to 4. In this sense,
the effect of the electric field would be similar to the well-
known domain switching in normal ferroelectrics through
domain wall displacements. The important difference is
that here the domains extend only a few cells along the
modulation direction and form a coherent regular lattice,
not fitting the usual continuous field approximation used
for domain walls. In addition, the domain-wall displace-
ments are also coherent, do not surpass the atomic scale
and are constrained to a fixed discrete value.

The existence of this polarization-flip transition can be
considered a logical consequence of the approach at higher
fields of the temperature stability domains of phases 2/9
and 2/11. As the free energies of configurations 〈65〉 and
〈54〉 become similar, it seems natural to expect that con-
figuration 〈64〉, which would be realized at the interface of
the two previous ones, will become competitive and finally
overcome at higher fields due to its higher net polariza-
tion.

Despite being physically quite reasonable, this type
of polarization-flip phase transition has never been ob-
served in other modulated polar materials and, in gen-
eral, has not been anticipated by theoretical models of
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BCCD [10,13,14]. General studies of microscopic mod-
els with competitive interactions as the ANNNI or the
DIFFOUR models, usually considered adequate to repro-
duce the main physics involved in BCCD, have also not
reported such type of transitions in their phase diagram
[4,15–21]. Phase diagrams of magnetic systems with vari-
ous modulated magnetic phases such as CeSb or UPd2Si2
do not seem also to have such type of transition [5,21].

On the other hand, Aubry [22] predicted a phase di-
agram as a function of tensile force and field for a gen-
eralized Frenkel-Kontorova model which presents topo-
logical features similar to those observed in BCCD. In
this phase diagram, phase transitions, which can be as-
similated as a polarization-flip, are ubiquituous and sys-
tematic. According to this work, successive polarizations
flips can take place as electric field increases producing
a characteristic pattern in the phase diagram. Phase dia-
grams with similar topologies and systematic flip transi-
tions have also been reported for a one-dimensional Ising
chain with elastic coupling [23] and for a one-dimensional
Ising chain with long-range interaction plus uniform and
staggered fields [24]. But this type of phase diagrams is
not restricted to spin-like or order-disorder systems and
we recently showed that a phase diagram with similar fea-
tures including polarization flip transition, can be realized
in a displacive phenomenological model much closer to
the mechanism involved of BCCD [25]. Using a soft-mode
scheme similar to the one observed in BCCD [26], a gener-
alized Landau-Ginzburg free-energy describing two anti-
crossed phonon branches, one of them thermally soft, was
sufficient to produce at low temperatures step-like modu-
lations, looking like a sequence of spins “up” and “down”,
which under the electric field exhibited polarization-flip
transitions. Thus, it seems that these spin-flip transitions,
despite earlier model calculations, should be a rather uni-
versal feature in modulated systems with competing peri-
odicities along a single direction. Nevertheless, no exper-
imental case, including magnetic systems, had been re-
ported before Le Maire et al. [12]. Up to our knowledge, if
confirmed, BCCD would be the first material where this
feature is indeed observed.

The purpose of the present work is to ascertain
and characterize with elastic neutron scattering data the
(E, T ) phase diagram of BCCD in the domain depicted by
Figure 1. In particular, we pretend to confirm and analyze
with a microscopic technique the polarization-flip transi-
tion of the structural modulation in phase 1/5, so far only
proposed from the results of dielectric measurements.

2 Experimental

2.1 The sample

A single crystal of fully deuterated BCCD (DBCCD) was
shaped as a platelet (10× 5× 1.3 mm3). Gold electrodes
were deposited in vacuum from a gold target onto the
two rectangular faces normal to the b direction. The gold
thickness of the electrodes was about 2000 Å. An electric
voltage as high as 3 kV was applied to obtain a dc electric

field parallel to the b axis of the structure. The thickness
(1.3 mm) of the platelet was carefully checked in order
to determine the electric field value and its homogeneity
within the sample. The sample was glued on its holder
and enclosed in an aluminum container with 20 bars of He
gas. This box was mounted on the cold finger of a Displex
closed-cycle cryostat. The temperature at the sample was
stable within ±0.05 K during a complete run.

2.2 The measurements

Elastic neutron scattering measurements were performed
on a 4F three axis spectrometer located on the cold source
of the Orphée reactor, Saclay, France. The scattering plane
defined by the wave vectors ki and kf of the incident and
outgoing neutron beams, respectively, was the (b∗, c∗)
reciprocal plane of the crystal at room temperature (or-
thorhombic symmetry). The vectors ki, kf , Q with ki −
kf = Q = G + k define the scattering geometry, with Q
the transferred momentum during the scattering process
and G a reciprocal vector of the basic lattice of main re-
flections. We have mainly recorded elastic scans with k
along the c∗ direction, i.e. k = ηc∗, in order to detect
the satellite reflections of the main reflection G = (0 4 0)
along the line (0 4 η). A compromise to work with a good
resolution and signals which do not require too large mea-
suring time was obtained with the following experimental
conditions: ki = 1.55 Å−1 from monochromator and col-
limations of 10 and 20 minutes before and after analyser,
respectively. Both monochromator (vertically bent) and
(flat)analyser are of pyrolitic graphite (PG[002]). Chosen
values of ki and kf are obtained through Bragg reflection
from a set of lattice planes on the monochromator and on
the analyser, respectively. A beryllium filter cooled with
liquid nitrogen was used to get rid of the second order
contamination.

The data were collected only on cooling runs. Before
each measurement the temperature was stabilized requir-
ing about 20 to 30 minutes depending on the temperature
step. The temperature step varied from 2 degrees to half a
degree in the temperature range of interest. Elastic scans
through second order and third order satellites were col-
lected systematically and lasted about one hour. In some
cases, also scans of the first order satellites were collected.
The complete data collection at each electric field value
lasted about 72–80 hours.

2.3 Data treatment

All raw collected data were fitted taking into account res-
olution effects of the spectrometer. Usually the best fit
was obtained superposing Lorentzian functions for each
observed diffraction peak. These functions have been used
systematically during the whole data process. The back-
ground was constrained to have a constant value for equal
measuring times. The normalized integrated intensity of
the fitted Lorentzian was then identified with the intensity
of the corresponding diffraction peak.
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2.4 Experimental results

The temperature and electric field domains where we have
concentrated our experimental effort correspond broadly
to the part of the (E, T ) phase diagram sketched in Fig-
ure 1. The scattering plane chosen for our elastic mea-
surements corresponds to Bragg reflections (0klm) in the
usual 4-integer indexation of one-dimensionally modu-
lated phases, where QBragg = ha∗ + kb∗ + lc∗ + mq. In
the incommensurate phase and at zero field the reflec-
tions on this plane are extinct for k + l = odd, due to the
operation {mx|0, 1

2 ,
1
2 , 0} present in its superspace group

Pnma(00γ)1s1̄. This is a fortunate situation that enables
to monitor high-order satellites without overlapping prob-
lems with low-order ones associated to the nearest main
reflection. Thus, as all reflections (0 4 1 m) are extinct
(including the main reflection m = 0), the closest reflec-
tions to interfere with those of type (0 4 0 m) (with m
positive) measured along the line (0 4 η) (η ≤ 1) are those
associated to the main reflection (0 4 2), i.e. satellites
(0 4 2 m) with m negative. In the commensurate phases,
indeed satellites are to superpose coherently, breaking in
general the unambiguity of the 4-integer indexation. How-
ever, superspace group extinction rules are kept for the
superposing reflections. Thus, for instance, in phase 1/5,
the satellite reflection of third order (0 4 0 3) located at
(0 4 0.6) does not suffer any overlap with the satellite of
second order (0 4 1 −2) located at the same point, as this
is extinct. Its first correction due to a coherent commensu-
rate superposing will come from the seventh order satellite
(0 4 2 − 7), which can be neglected in a good approxi-
mation. Something similar happens for second and fourth
order satellites where the first effective superposing will
take place with eighth and sixth order satellites respec-
tively. This favorable circumstance does not change when
an electric field is applied along the b-axis. The field will
in general break the superspace symmetry and reduce the
symmetry, but the superspace symmetry operation caus-
ing the favorable extinction rule, being compatible with
the field, is maintained.

Figure 2 presents a typical elastic scan (0 4 η) at
T = 64.4 K and E = 5 kV/cm showing the second and
third order satellites corresponding to phase 1/5. The tem-
perature being at about the center of the stability range of
this phase, the peaks can be observed isolated. In general,
however, a persistent coexistence of the three competing
phases was observed. Figure 3 depicts the form of these
scans for an intermediate field of 10 kV/cm as a function
of the temperature. The second and third order satellites
located at the points corresponding to phase 1/5 coexist
with the equivalent ones for phase 2/11 and phase 2/9
in the low and high temperature domains, respectively.
These coexistence regions can be quite large and extend
in general several kelvin. At higher fields, when the do-
main of phase 1/5 reduces to a few kelvin, the simulta-
neous coexistence of the three phases can be observed, as
shown in Figure 4. In principle, this phase coexistence
cannot be attributed in a significant part to tempera-
ture gradients, as these should have values well beyond
any reasonable estimate. Therefore, its origin is proba-
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Fig. 2. Elastic scan obtained at E = 5 kV/cm and T = 64.4 K
showing the second and third order satellites corresponding to
phase 1/5.
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Fig. 3. Elastic scans at E = 10 kV/cm as a function of tem-
perature from 52 K to 68 K, showing in general the coexistence
of satellite peaks of phases 1/5, 2/9, and 2/11.

bly a strong metastability of the competing phases and
perhaps some uncontrolled inhomogeneity of the electric
field. Similar strong coexistence of neighbouring phases
was also observed in previous experiments at low elec-
tric fields [10,11]. This situation precludes a meaningful
determination of the stability border lines of the differ-
ent phases in the phase diagram. This contrasts with the
dielectric measurements in [12], where the metastability
of the phases, if existing, was no obstacle for observing
well-defined borders between the phases. Nevertheless, we
could obtain a rough estimation of the phase diagram by
establishing, at each measured field, the temperature in-
terval where phase 1/5 was majoritary as indicated by its



M. Quilichini et al.: Polarization-flip transition under electric field in BCCD 435

0.30 0.50 0.70
0.0

500.0

(0 4 η) 1/5 T = 64.5 K

2
nd

 order 3
rd
 order

2/11
2/9

1/5

2/9 2/11

co
un

ts
/1

2s

η

E = 19.5 kV/cm

(r.u.)

0.30 0.50 0.70
0.0

1000.0

(0 4 η) T = 64.6 K

1/5

2
nd

 order 3
rd
 order

2/9

co
un

ts
/1

2s

η

2/9
1/5

E = 21 kV/cm

(r.u.)

Fig. 4. Elastic scans at about 64.5 K for E = 19.5 kV/cm and
21 kV/cm showing the strong variation of the relative intensi-
ties of the second and third order satellites for phase 1/5.

third order satellite having a higher intensity than those
corresponding to any of the other two phases. Using this
somehow arbitrary criterion, the phase diagram of [12] is
confirmed in broad terms, but the field values involved is
somehow larger. Normal phase 1/5 has an appreciable sta-
bility temperature range up to electric field values of the
order of 20 kV/cm, while this reduces to about 16 kV/cm
in the dielectric measurements.

The strong uncontrollable metastability of the differ-
ent phases also precludes the establishment of a direct
relation between the variation of the structure and the
changes with temperature or electric field of satellite ab-
solute intensities. Obviously, an important part of the in-
tensity variations could be due to changes in the share of
each competing phase within the sample. Only the ratios
between the intensities of different satellites corresponding
to the same phase are free from this effect and can be used
to ascertain the structure evolution of the corresponding
phase with temperature and electric field. Typically the
intensity of the satellites of second order is much smaller
than those of third order, while these latter are much
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Fig. 5. Elastic scans at E = 22 kV/cm and 23 kV/cm. The
new relative intensities of the second and third order satellites
for phase 1/5 is stabilized. The strong intensity of the 4th order
satellite is also shown at 23 kV/cm.

weaker than the first order satellites. This is systematic
for the three phases concerned (see Fig. 3). At 5 kV/cm
the ratios for phase 1/5 of first and second order satellite
intensities with respect to the corresponding third order
satellite, henceforth called I1/I3 and I2/I3, were 7 and 0.1,
respectively. For low electric fields, this ratio is quite in-
sensitive to temperature and electric field changes. This
must be related with the fact that the modulation is quite
saturated in this temperature range, both in amplitude
and step-like form and does not significantly vary. I2/I3 is
somehow larger for phases 2/11 and 2/9, being typically
of the order of 0.3 and 0.5, respectively. As the electric
field raises, I2/I3 stays essentially constant for phases 2/9
and 2/11, while in the case of phase 1/5, an abrupt in-
crease takes place between the two measurements done at
19.5 kV/cm and 21 kV/cm, as seen in Figure 4. I2 clearly
surpasses I3 at 21 kV/cm, and I2/I3 is already about 2
at 22 kV/cm, while the following measurement performed
at 23 kV/cm indicates that I2/I3 saturates (see Fig. 5). If
measurements at different temperatures are compared, the
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Fig. 6. Behaviour as a function of electric field of the ratio of
the second and third order satellites I2/I3 for the three com-
peting phases 1/5, 2/9 and 2/11. The points correspond to the
average values obtained for different temperatures within the
domain where the phase is clearly observed. Such a tempera-
ture domain (around 64.5 K) depends of the electric field value.
An error bar corresponding to the standard deviation of these
values is indicated when significant.

value of I2/I3 is essentially temperature independent for
phases 2/9 and 2/11. This is also the case for phase 1/5
at low fields, but at fields 19–22 kV/cm I2/I3 has sig-
nificant temperature variations, while it becomes again
essentially temperature independent at 23 kV/cm. Mea-
surements at higher electric fields were not done to avoid
dielectric breakdown of the samples.

In Figure 6 a summary of the behaviour of I2/I3
for the different phases is depicted. The error bars in
the figure correspond to the variations observed between
scans at different temperatures mentioned above. Clearly,
an abrupt redistribution of the satellite intensities for
phase 1/5 takes place at about 21 kV/cm indicating a
discontinuous change in the structural modulation, while
keeping the value of the primary modulation wave vector.
In accordance with the results of Le Maire et al. [12], we
could observe that, beyond this threshold field, the sta-
bility temperature range of the new phase 1/5 spreads at
the expense of the neighboring ones. The scan displayed
in Figure 5 at 23 kV/cm shows that the intensity of the
fourth order satellite of phase 1/5 has also become very
strong, being comparable to I3. In fact, the value of I4/I3
at 23 kV/cm, for all scans with a significant part of the
new transformed phase 1/5, is about 1.0. The ratio I1/I3
also suffers a large jump changing from the value of 7 ob-
served at low fields to 25.

3 The polarization-flip transition

The abrupt change at higher-fields of the satellite inten-
sity ratios I2/I3 and I4/I3 of phase 1/5 reported and

characterized in the preceding section can be demon-
strated to be indeed the signature of a polarization-flip
transition. As explained above, for the satellites actually
measured in this work the commensurate coherent
overlap of higher order satellites can be neglected in a
good approximation. Hence, we can quantitatively argue
as in the case of an incommensurate modulation despite
the phase being commensurate. Obviating the thermal
Debye-Waller factors, the intensity of a given satellite
is proportional to the modulus of the corresponding
structure factor:

F (H) =
∑
j

bjeiH·rjgmj (H) (1)

where H (= QBragg) is the diffraction vector, bj and rj

are the coherent scattering length and average position
of atom j in the average unit cell. gmj (H) can be consid-
ered as a form factor resulting from the modulation and
is given by

gmj (H) =
∫ 1

0

dvei(H·uj(v)+2πmv) (2)

where m is the satellite index of reflection H and uj(v)
is the displacive modulation function of atom j. These
functions have been determined by neutron diffraction by
Hernandez et al. [8] both for phases 1/4 and 1/5 . Accord-
ing to this work, the atomic modulation functions have
soliton character and can be regarded as step-like func-
tions (see Fig. 7). In a zeroth order approximation they
can be expressed as [27]:

uj(v) = A(v)ej (3)

where the set of vectors ej constitutes a polar B2u mode,
while A(v) is a step-like function (A(v) = 1, ∆ > v ≥
0; A(v) = −1, 1 > v ≥ ∆; ∆ = 1/2). Approximating
exp(iH · uj(v)) by 1 + iH · uj(v), the form modulation
factors gmj (H) for satellites (m 6= 0) is proportional to the
corresponding Fourier component of uj(v), and therefore
of A(v). Thus, for satellites:

F (H) = A−m

∑
j

bj(iH · ej)eiH·rj

 (4)

with A−m =
∫ 1

0 dvA(v)ei2πmv.
A polarization-flip transition implies in this picture a

change of the ∆ value of the global function A(v) from 0.5
to 0.6, as schematized in Figure 8. This means, in prac-
tice, that the sixth atomic displacement in the atomic
modulations depicted in Figure 7 for phase 1/5 should
suffer a jump and acquire approximately opposite values.
Neglecting the small difference of the satellite diffraction
vectors, the variation of the satellite intensity ratio is then
expected to be directly correlated with the variation of
the ratio of the square moduli of the Fourier amplitudes
| Am |2= 4

(nπ)2 sin2(nπ∆). A shift of ∆ from 0.5 to 0.6
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Fig. 7. Atomic modulations along the polar axes of atoms
O3, D1 and N of BCCD in phases 1/4 and 1/5 [8]. The points
describe the discrete atomic displacements obtained in a stan-
dard commensurate structure determination. Both approaches
show the saturation of the modulation and its strong step-like
form.
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Fig. 8. Scheme of the change in the idealized modulation func-
tion A(v) corresponding to the polarization-flip transition.

would then imply a variation of I2/I3 and I4/I3 from zero
to values around 2.3 and 1.5, respectively. Something of
this sort takes place indeed in DBCCD around 20 kV/cm.
Although overestimated, these values roughly correspond
to the abrupt observed increase of both ratios. One should
note that | Am |2/| An |2 is strongly dependent on ∆.
Thus, for instance, | A2 |2/| A3 |2 would be 0.3, 60 and 21
for ∆= 0.55, 0.65 and 0.70, respectively, while the value
of | A4 |2/| A3 |2 for the same ∆ values would be 0.2,

20 and 2, respectively. Therefore, the observed intensity
ratios after the transition fit nicely with a shift of δ from
0.5 to 0.6. A better agreement would not be reasonable
given the approximations included in the above deriva-
tion. For instance, the above reasoning would mean a ratio
I1/I3 = 9, to be compared with the experimental value of
7 observed at low fields. This gives an idea of the relative
error of the approximation. On the other hand, this ra-
tio would change to 24 after the polarization-flip, which
agrees with the observed value (25). The truncation of the
exponentials to the first two leading terms of its Taylor ex-
pansions also yield, in general, unrealistic zero values for
I2, I4 and all even satellites for ∆ = 0.5. The perfect step-
like form assumed for A(v) would even maintain this result
in better approximations. One should, therefore, consider
the experimental non-zero values at zero field of the second
and fourth order satellites of phase 1/5 as a consequence
of the deviations of the atomic modulations from a perfect
step-like function.

In the cases of phases 2/9 and 2/11, an additional cause
for non-zero even satellites at ∆=0.5 is the coherent over-
lap of (commensurate) satellites, disregarded above. For
these two commensurate phases both even and odd or-
der satellites superpose. This is not the case in phase 1/5.
This is the reason for the significant higher value of I2/I3
in phases 2/9 and 2/11, compared with phase 1/5 (see
Fig. 6). The second order satellite for phase 2/9 superposes
terms m = 2,−7,11..., while in phase 2/11 the superposi-
tion involves m = 2,−9,13.... . As the amplitudes to be su-
perposed decrease with 1/m, this also explains the higher
value of I2/I3 for phase 2/9, compared to phase 2/11.
One should take into account in this respect that the
commensurate overlap correction is much weaker for I3
in phases 2/9 and 2/11 as the two satellites of lower order
to superpose are weak even-order satellites, which are zero
in the ideal anti-symmetric step modulation.

4 Conclusions

The neutron diffraction experiments reported here ev-
idence a polarization-flip transition under electric field
of the five-fold phase (phase 1/5) of (full deuterated)
BCCD. The polarization modulation along the c-axis ap-
proximately described by a chain of polar spins abruptly
changes from a 〈5〉 configuration to a 〈64〉 one. This
confirms the interpretation of earlier dielectric experi-
ments [12]. The essential features and topology of the
(E, T ) phase diagram proposed in [12] concerning the com-
petition between phases 2/9, 1/5 and 2/11 have also been
confirmed. The threshold field at which the flip in the po-
larization configuration takes place is, however, consider-
ably larger in our measurements (about 4 kV/cm higher).
The deuteration of the samples of the present neutron
experiments seems insufficient to explain this difference.
Up to our knowledge BCCD is then the first experimen-
tal modulated system with competing periodicities where
this type of field-induced polarization or spin flip transi-
tion is observed. Despite its plausibility, it has never been
observed neither in other modulated ferroelectrics, nor in
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modulated magnetic materials. Recently we have shown,
however, using a simple general phenomenological model,
that this type of phase transitions can be ubiquituous in
polar modulated structures with saturated strong solitonic
modulations [25].

Theoretical models for which this type of transitions
occurs exhibit characteristic phase diagrams with self-
similar features [22–24] and many multicritical points of
very specific nature, the so-called upsilon points [24,28].
An upsilon point is an end point of a first-order tran-
sition line and an accumulation point of other upsilon
points. Sasaki [24] has first pointed out the resemblance
of the (E, T ) phase diagram of BCCD to these theoret-
ical ones and signaled BCCD as a first possible experi-
mental system with upsilon points. The confirmation of
a polarization flip transition in BCCD further supports
this idea. In principle, this would imply the existence,
between phases 2/9 and 1/5, in a very narrow temper-
ature interval, of a cascade of higher-order commensurate
phases (intermediate in the sense of the Farey tree hier-
archy). Their transition lines would be essentially parallel
in the (E, T ) plane. A similar structure of transition lines
would be present between phases 1/5 and 2/11. These in-
termediate phases have in general not been observed in the
experiments above, but they cannot be discarded. Their
temperature and electric field domains would be in prin-
ciple so narrow that very accurate correlated tuning of
temperature and electric field would be required to detect
them. It is significant, in this respect, that the scans un-
der 19.5 kV/cm, where field and temperature values were
closer to the two hypothetical upsilon points limiting the
horizontal flip transition line, the elastic scans exhibited a
more complex structure (see Fig. 4), suggesting the pres-
ence of higher order commensurate phases. For instance,
the scan represented in Figure 4 shows a small contribu-
tion of phase 3/14, which could be fitted quantitatively.
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